Home > Blog > Tag > bioprinting
Tag » bioprinting

In September, Turlif spoke at TEDxTrondheim's Back to Basics. As usual, an inspirational discussion about some of the problems with current 3D modeling software, and modeling with simplified polygons, which lose some of the infinitely fine grain details of natural and real world objects. Turlif together with our team have developed a generalized and holistic approach for accurately modeling complex real world objects called Digital Materialization (DM). Using mathematics and computational power, our approach has promising applications, that go far beyond 3D printing for modeling the real world through software.


Be sure to check out the video!





Share this post


Photosynthesis.  A relatively simple but highly efficient process of plants using sunlight to split water molecules into hydrogen and oxygen, which produces electrons and creates sugars for the plants growth and reproduction. Plants have evolved this process to a near 100% efficiency -- every photon of sunlight is converted to an equal number of electrons.


To date, even though the sun is the most abundant source of energy on the planet, humans harvest only a small fraction and convert it into energy.  Researchers at the University of Georgia have found a way to tap into the plants photosynthesis process and capture the electrons before the plant can convert them into sugars.  While this work is still in its infancy they do predict that in the near future it could be possible to power remote sensors or other lower powered portable electronic equipment.


But if we imagine beyond this -- what about man made objects that have the intelligence and ability for photosynthesis, such as the vision of the artist Vivien Muller below.  Pretty cool, but let's go another step beyond this. One of the areas where there is much R&D in the 3D printing industry is in material science. And not just to produce better plastics, powered metals and even glass,but to use 3D printers with natural materials and for the creation of meta materials.  Regenerative medicine is certainly pushing the boundaries here, and will stand to make massive changes to in the human existence.  Some researchers are even using 3D printers to produce synthetic meat.  In addition, imagine using this same technology to print synthetic wood, even synthetic trees and plants - a forest.  It will could look exactly like a natural forest (this would be up to the designer of course), with the addition of electrical plugs.



Far fetched?  Less so then you might think.


The possibility of this future is partially what inspired Uformia to develop our new geometric kernel and subsequent tools.  In fact if anyone has seen Turlif speak during the last few years, you have heard these ideas before.


So, why all the fuss over the 3D printed gun when we have things like this to discuss?


Via Slashdot



Share this post

Nature is unbelievably complex. Animals and humans have evolved in this world without in-built digital systems. Our minds have evolved in ways that allow us to make sense of our environment, so that we can abstract and categorize the things that we encounter and experience. As such, we have an in-built tendency to represent the world in terms of simple, clearly identifiable boundaries of space and objects. When we create objects ourselves, we continue to follow this path without even realizing it. Traditional manufacturing and design assumes that each object, or each independent part of a larger object, is made of a single homogeneous material. This makes human-made objects clearly stand apart from nature. A tree, for example, is not made from a single material and nor does it have 'parts' that are as easily discernible as we would think - if we look up close we can see that roots blend into the trunk, which blends into branches which blend into twigs, which blend into leaves. Our abstractions are useful for recognition and categorization, but they do have limitations when it comes to creating or recreating complex objects like this.

Historically then, we've interacted with nature through powerful but reductive simplifications and approximations - the way we look at it, the way we model it and the way we attempt to reproduce it. Cheap computing power is now extending our capabilities, putting us in a far better position to understand the complexities of nature. We have better control over matter and can design and fabricate a whole new class of human-made objects. These objects offer more localized, dynamic, sustainable and natural interactions with the world. Unfortunately, we've hit a stumbling block. The current generation of digital design and fabrication systems have failed to fully capitalize on the raw computational power that is available to us. We still can't create objects that offer a comparable wealth of detail, complexity and combination of materials that we find in nature. Here is an example of how a typical user might model a watermelon using 3D modeling tools and a real watermelon. There is little to compare other than the rough outside shape. How can we truly represent a slice of watermelon digitally?

Let us take a very basic example, one that is even human made, a glass marble. Marbles are simple children's toys, but how can we exactly model their construction?

The only real 'surface' here is the outer shape, but modelling it with polygons will always leave it faceted. Perhaps we can try to overcome this inaccuracy and using a parametric surface, but can we efficiently represent the minute chips made by numerous games of marbles? Still, a spherical surface won't allow us to define what's inside. Perhaps each of those different colors could be a separate part? If we look closely at the swirls we can see that they don't have sharply defined edges. The colors mix and blend together throughout the interior. Our traditional approach of modelling with surfaces falls apart completely. Our entire approach is wrong because this is a problem that requires real volumes with no neatly defined 'parts'.

Is this a fair example? Would anyone actually want to recreate a watermelon or 3D print a glass marble? Perhaps not, but what about a human organ such as a kidney. That's also a challenging volumetric problem and one that would be of huge benefit if we could design and fabricate them as required.

So, the way we think about the world allows us to make sense of it, but doesn't necessarily let us reproduce it. Existing digital systems have followed our natural way of thinking and have led us to an impasse. They are imprecise and fundamentally incapable of accurately representing real objects. If we want to move forwards, we will need to take a very different approach.

Share this post

A few months ago our CTO, Turlif, spoke at the Renato Archer Research Center (CTI) in São Paulo, Brazil at a workshop aimed at showing the state-of-the-art and the complete cycle of the human organs bio-fabrication process utilizing three-dimensional printing. Besides the challenges and the enabling technologies on each bio-fabrication step, the narrow dependency of this area with information technology was also discussed. Check out his talk, part 1 and part 2, as well as some of the other speakers there, such as Evan Malone (co-creator of the Fab@Home and founder of NextFab) and Vladimir Mironov (one of the leading researchers in the areas of cardiovascular development, vascular biology, tissue engineering, and phenomics).

Share this post

Jul 25 2011


Posted by: iain |
Tagged in: technology, bioprinting, 3D printing

recent article by Bonnie Berkowitz in the Washington Post discusses bioprinting and touches on its implications for organ replacement.

I occasionally get an uncomfortable feeling when reading news articles about 3D fabrication, particularly in the mainstream press. They can take on a simplistic tone that makes me think of a B movie sci-fi script or that young children are the target audience (“The machine looks like the offspring of an Erector Set and an ink jet printer. The “ink” feels like apple sauce and looks like icing”) but maybe I am imagining it and the writer was simply hungry when she wrote the piece. Or perhaps the concepts are just so large and potentially far-reaching that we are all struggling to find the right words to accurately corral and shape them to our understanding. I don’t know though, I think people are able to get more than we sometimes give them credit for, it just falls upon us to communicate the ideas well and in doing so perhaps giving shape to the concepts.

Despite my issues with the presentation, it is gratifying to see such an interesting field within 3D fabrication being discussed.

Researchers in bioprinting like Tony Atala, (Director of the Wake Forest Institute for Regenerative Medicine) and Lawrence Bonassar, (Cornell University) are using a “pearly material” made up of human cells that resembles "icing" (hmmm...) to experiment with printing human organs and bones.

“The possibilities for this kind of technology are limitless” said Lawrence Bonassar. His lab has already printed vertebral tissue that has been successfully introduced in mice. “Everyone has a mother or brother or uncle, aunt, grandmother who needs a meniscus or a kidney or whatever, and they want it tomorrow ... The promise is exciting.”

The article goes on to say that there are many challenges ahead and this bioprinting technology is many years away from creating the more complex organs. Up to now, even the less complex body parts to fabricate such as skin and vertebral disks have not been put in human bodies yet. However, they are expected to be ready for human trials within two to five years.

“Scientists say the biggest technical challenge is not making the organ itself, but replicating its intricate internal network of blood vessels, which nourishes it and provides it with oxygen.”

Accordingly, it is believed that the best initial option is to create an intermediary environment that encourages the majority of the cells to grow on their own once the major support vessels within the organ have been fabricated.

“The cells, after all, have been functioning within the body already in some capacity, either as part of the tissue that is being replaced or as stem cells in fat or bone marrow. (Donor stem cells could be used, but ideally cells would come directly from the patient.)”

“The cells are actually the tissue engineers, so the people that do the work are just cheerleaders,” said Rocky Tuan, director of the Center for Cellular and Molecular Engineering at the University of Pittsburgh. “When we do tissue engineering, we are accelerating what the cells normally do. I tell people its assisted living, because we help the cells. We build all the houses and everything, and then we say, ‘Cells, come in and do your thing.’ ” If the cells do their thing correctly, the organ lives and grows just as the original once did.”

The technical difficulties are not the only hurdles. Keith Murphy, (co-founder of Organovo) believes that it would take less than ten years to make a kidney if the American government created a ‘human organ project’ and made it a goal to manufacture a human kidney but that would take a massive commitment of resources. And then there is the issue of clearing it with the Food and Drug Administration.

The article concludes looking at the possibility of fabricating an entire human being. Something it describes as science fiction.

“While a complex organ would be the holy grail for most tissue engineers, some like to look even farther ahead, straight into science fiction.”

“If one can bioprint functional human organ constructs, then bioprinting a whole human — or whatever will be the name for such a creature — is just a logical extension,” says Vladimir Mironov, a pioneer in the field.

We are hastily assured that not everyone feels that this is necessary and the more typical way of producing humans works pretty well. Okay.

Whatever the case, a couple of interesting points came up. One is the flexibility in producing what is desired and that fabrication is not locked to any specific location; human organs to go as it were. Regardless of the specific application, the portability and future customizability of production is starting to become evident. There can be no doubt that there will have to be huge shifts in how we deal with a manufacturing process that can undermine manufacturing monopolies and effect how we see personal ownership and trade. What changes will 3D printing cause in transport and the exchange of commodities. Will changes such as these release us from many of the more mundane aspects of daily life that we just accept as a given? “I don’t need to go to the Mall; I’ll just make it here”. Science fiction indeed.

What happens when we don’t have to travel, when we don’t have to line up for daily commodities… when we don’t have to burn vast quantities of fuel to transport those commodities over large distances? What happens to the commodities themselves when they lose monetary value based on rarity ( a rarity that might well have been created simply by limiting access to them)? I find myself thinking back to the music industry before you could share MP3s or produce your own music so easily. It could be argued that we have a more dynamic and varied music scene than we have had for a long time because such accessibility encouraged small, non-mainstream musicians to produce music in the “garage” and get it out there but I don’t know if the major record labels would say that. What happens when that occurs to an ever increasing number of objects? What happens to Wal-Mart? And by extension what on earth (literally) will we do with all the discarded junk when we grow bored of it?

Maybe we will become fat dissocialized lumps that need 3D printers to create our organs as they languish from loneliness and misuse in our decaying unexercised bodies…or maybe we will make super humans…who knows at this point?

As a final note on the article, I also found myself wondering why the writer chose to finish by assuring the reader that not everyone is considering fabricating whole humans and that the more traditional ways of reproduction are still pretty good. Why do that? It's probably my imagination but the future moral and ethical debates at a society wide level are going to be picked up as people realize that issues like the stem cell debate pale when discussing the possibility of producing whole humans. Imagine the letters to the editor when that sort of furore ensues? Will conservatives still be outraged if we don’t have to use the stem cells of a foetus to produce the real meat and gristle of the human form? Will debates regarding the existence of the soul intensify when we create an exact human form in a fabricator? Will such outrage be limited to conservatives only?

What happens to reproduction’s last mysteries when the human form is manufactured exactly as if from a human womb, simply, or rather not that simply ex vivo?

Share this post